Universita

® Jeoli Studi

@ dclla Campania
Luigi Vanuvitell

EXERCISE

1730

FACTORIAL

the factorial of a positive integer 72, denoted by »2!, is the product of
all positive Integers less than or equal to n:

nl=nxn—-1)x(n—-2)x....x3 x2x1

RECURSION

method of solving a problem where the solution depends on solutions to
smaller instances of the same problem

In python you could implement it with function that calls itself.

3/30

RECURSION

Whenever you write a recursive function, you need to include some Kind
of condition which will allow it to stop recursing

This happens when the function no longer calls itself so the function
ends by returning a value (costant)

4/30

WRITE YOUR RECURSIVE FACTORIAL

EXPECTED RESULTS

N!
I
l
2

120

120

2040

0
I
2
J
4 24
d
b
I
§

40320

RECURSIVE FACTORIAL

RECURSION

What would happen if we omitted that condition from our function?

In theory, the function would end up recursing forever and never
terminate, but in practice the program will crash with a RuntimeError

1/30

RECURSION

Writing fail-safe recursive functions is difficult

Any recursive function can be re-written in an iterative way which
avolds recursion

8/30

ITERATIVE FACTORIAL

range((n-1), 0, -1):
r

FIBONACCI NUMBERS

the Fibonacci numbers, commonly denoted Fn form a sequence, called
the Fibonacci sequence, such that each number is the sum of the two
preceding ones, starting from 0 and 1:

Fo =0,F; = 1 and
Fn — L'n—1 _|_Fn—2

0,1,1,2,3,9,8,13,21,34, 55

10/30

RECURSIVE FIBONACCI

n < 2:
N

fibonacci rec(n-1) + fibonaccl rec(n-2)

11730

ITERATIVE FIBONACCI

[l
-

last
next

[l
—

_ range(1,n):

previous_last = last

last = next

next = previous_last + last
next

12/30

PIGRECO - LEIBNIZ FORMULA

13/30

SIMPLIFIED VERSION T0 CALCULATE THE
CONVERGENCE OF 7r

T=4/1—4/3

4/5 — 4/7

4/9 — 4/11....

def
numerator= 4.0
denominator = 1.
operation = 1.0
pi1 = 0.0
for _ 1n range(n_terms):
pl1 += operation * (numerator/denominator)
denominator += 2.0
operation *= -1.0
return pi

0

15/30

SEARCHING

LINEAR SEARCH

1tem 1terable:
item == key:
True

False

11/30

BINARY SEARCH
ONLY ON SORTED DATA

low = 0
high = len(sorted_iterable) - 1
low <= high:
mid = (low + high) // 2
sorted_iterable[mid] < key:
low = mid + 1
sorted_iterable[mid] > key:

high = mid - 1

True
False

18/30

contacts={}
your_choice= 0
your_choice != 5

your_choice==1:

add _contact(contacts)
your_choice==2:
remove_contact(contacts)
your_choice==3:

list contacts(contacts)
your_choice==4;
search_contact(contacts)

CONTACTS

13/30

def menu():
print('1 - add a contact')
print('2 - remove a contact')
print('3 - list all contacts')
print('4 - search a contact')
print('5 - exit')

20/30

def add contact(dict):
contact=input('Insert name:. ')
mobile_number=input('Mobile number: ')
dict[contact]=mobile number
print('Contact %s with %s number added\n' % (contact,mobile_number))

21/30

def remove contact(dict):
contact = 1input('Contact to remove: ')

1T contact 1in dict.keys():
del dict[contact]
print('Contact removed')

else:
print('Contact %s not found' % (contact))

22/30

def list contacts(dict):
1T len(dict)==0:
print("Nothing here")
for x 1n dict.keys():
print("Contats: %s \tNumber: %s" % (x, dict[x]))

23/30

def search contact(dict):
contact = input('Insert contact to search: ")

for name 1in dict.keys():
1f name == contact:
print('Contact %s with %s number\n' % (name,dict[name]))

print("Nothing here")

24/30

DNA
DEOXYRIBONUCLEIC ACID

Genes are commonly represented in computer software as a sequence
of the characters cytosine [C], guanine [G], adenine [A] or thymine [T].
Each letter represents a , and the combination of three

nucleotides is called a

25/30

1 codon
1 nucleotide (3 nucleotides)

26/30

def

gene = []

for 1 1n range(0, len(s), 3):
1T (1 + 2) >= l1len(s):

return gene

codon = (Nucleotide[s[1]], Nucleotide[s[1+1]], Nucleotide[s[1+2]])
gene.append(codon)

return gene

21/30

def linear_contains (gene, key_codon):
for codon 1in gene:
it codon == key_codon: # only for educational purpose
#else return (key_codon 1n gene) should be enough
return True
return False

28/30

BINARY SEARCH WORKS ONLY ON SORTED GENE!

low = 0
high = len(gene) - 1
low <= high:
mid = (low + high) // 2
gene[mid] < key_codon:
low = mid + 1
gene[mid] > key_codon:
high = mid - 1

True
False

29/30

print(linear_contains(my_gene, acg))
print(linear_contains(my_gene, gat))

sorted_gene = sorted(my_gene)

print(binary_contains(sorted_gene, acg))
print(binary_contains(sorted_gene, gat))

30/30

1)

