
Iterables: List, Tuple, Set,
Dictionaries
Ing. Lelio Campanile

1/77

Introducing lists
• A list is a collection of items, stored in a variable

• Items should be related

• Items could be of diffrent types (objects)
colors = ['red', 'green', 'blue']
print(colors)
['red', 'green', 'blue']

2/77

Naming a list
• since lists are collection of objects, it is a good practice to

give them a plural name

• for a list of color, call the list 'colors'

• for a list of student, call the list 'students'

• in this way a single item in the list will be the singular name
('color'), the entire list will be plural ('colors') - Iteration
pattern

3/77

Defining a list
A list is a container which holds comma-separated values
(items or elements) between square brackets where Items or
elements don't need all have the same type.

• elements in a list have an index

• list are zero-index: the first element in a list has 0 as index

4/77

List indexes
• index counts elements in a list

• if an index has a positive value, it counts from the beginning

• if an index has a negavite value, it counts backward

• you can get the element of a list by its index in square
brackets

5/77

colors = ['red', 'green', 'blue', 'black']

item red green blue black

index (from
left)

0 1 2 3

index (from
right)

-4 -3 -2 -1

6/77

7/77

8/77

Common list operations
Edit element in a list

colors[0] = 'orange'

print(colors)
['orange', 'green', 'blue', 'black']

9/77

Common list operations
get the position of an element in list

colors = ['red', 'green', 'blue', 'black']
print(colors.index('green'))
1

10/77

11/77

Common list operations
test if an element is in a list

colors = ['red', 'green', 'blue', 'black']

print('red' in colors)
True
print('orange' in colors)
False

12/77

Common list operations
Adding item to the end of a list

colors = ['red', 'green', 'blue', 'black']

colors.append('orange')
print(colors)
['red', 'green', 'blue', 'black', 'orange']

13/77

Common list operations
Insert item into a list

we specify the position and everythings from that point is
shifted one position to the rigth
colors = ['red', 'green', 'blue', 'black']

colors.insert(1, 'orange')
print(colors)
['red', 'orange', 'green', 'blue', 'black']

14/77

Common list operations
removing item by position

we specify the position and everythings from that point is
shifted one position to the rigth
colors = ['red', 'green', 'blue', 'black']

del colors[1]
print(colors)
['red', 'blue', 'black']

15/77

Common list operations
removing item by value

remove only the first macthing value in a list
colors = ['red', 'green', 'blue', 'black']

colors.remove('green')
['red', 'blue', 'black']

16/77

Common list operations
popping item from a list

• remove the last item from the list (with no parameter)

• always it returns the popped item

17/77

colors = ['red', 'green', 'blue', 'black']

last_item = colors.pop()
print(last_item)
black
print(colors)
['red', 'green', 'blue']

18/77

Common list operations
popping item from a list

• or in a specific position

• always it returns the popped item

19/77

colors = ['red', 'green', 'blue', 'black']

item = colors.pop(1)
print(item)
green
print(colors)
['red', 'blue', 'black']

20/77

Common list operations
number of elements of a list

colors = ['red', 'green', 'blue', 'black']

number_item = len(colors)
print(number_item)
4

21/77

Numerical lists
• a list composed by only numbers

• it's not special

• you can use some special function

The range() function is a shortcut to create a numerical list
ordered

range(1,11): [1,2,3,4,5,6,7,8,9,10]

22/77

range() function
The range() function returns a list of consecutive integers. The
function has one, two or three parameters where last two
parameters are optional.

• range(a): Generates a sequence of numbers from 0 to a,
excluding a, incrementing by 1.

23/77

range() function
• range(a, b): Generates a sequence of numbers from a to b

excluding b, incrementing by 1.

• range(a,b,c): Generates a sequence of numbers from a to b
excluding b, incrementing by c.

24/77

Numerical lists
min()

ages = [22, 38, 33, 50, 9, 16, 28, 11]

youngest = min(ages)
print(youngest)
9

25/77

Numerical lists
max()

ages = [22, 38, 33, 50, 9, 16, 28, 11]

oldest = max(ages)
print(oldest)
50

26/77

Numerical lists
sum()

ages = [22, 38, 33, 50, 9, 16, 28, 11]

total = sum(ages)
print(total)
207

27/77

exercise
• calculate the ages' average

• add 3 different ages

• remove the last item

• remove age 22

• recalculate the ages'a average

28/77

exercise
• Store the values 'python', 'c', and 'java' in a list. Print each of

these values out, using their position in the list.

29/77

exercise
• Print a statement about each of these values, using their

position in the list.Your statement could simply be, 'A nice
programming language is value.'

• Think of something you can store in a list. Make a list with
three or four items, and then print a message that includes
at least one item from your list. Your sentence could be as
simple as, "One item in my list is a ____."

30/77

Lists and Looping
accessing all elements in a list

• we use a loop to access all the elements in a list, no matters
how many elements the list was composed

• we are able to "use" all the elements in the list with 3 line of
code

• A loop is a block of code that repeats itself until it runs out
of items to work with or until a certain condition is met

31/77

colors = ['red', 'green', 'blue', 'black']

for color in colors:
 print(color)
red
green
blue
black

• the keyword "for" tells Python to get ready to use a loop

• the variable color is a placeholder variable. In thi variable python will
place each item in the list into, one at a time

• when there are no more items in the list, the loop will end
32/77

for loop and range function
for a in range(4):
 print(a)

 0
 1
 2
 3

33/77

Enumerating a list
If you want to enumerate a list, you need to add an index variable to hold the
current index

colors = ['red', 'green', 'blue', 'black']

for index, color in enumerate(colors):
 place = str(index)
 print("place: " + place + " color: " + color)
place: 0 color: red
place: 1 color: green
place: 2 color: blue
place: 3 color: black

34/77

Lists and Looping
FOR Special keywords

Python allows two keywords to be used within a for loop:
break and continue.

The two keywords have two different meanings:

• Break used to immediatly break the loop and exit!

• Continue used to skip to the next iteration step!

35/77

While loop

In Python, also the while loops are
permitted

The while loop runs as long as the
conditio evaluates to True and execute
the code block

x = 0;
while (x < 5):
 print(x)
 x += 1

36/77

While loop
infinite loop

x = 10;
while (True):
 print(x)
 x += 1

37/77

While loop
else statement

else statement is executed when the
condition is false
x = 0;
s = 0
while (x < 10):
 s = s + x
 x = x + 1
else :
 print('The sum of first 9 integers : ',s)

38/77

exercise
• Repeat First List, but this time use a loop to print out each value in

the list.

• Reapet First List, but this time use a loop to print out your statements.
Make sure you are writing the same sentence for all values in your list

• Repeat First List, but this time use a loop to print out your message
for each item in your list. Again, if you came up with different
messages for each value in your list, decide on one message to
repeat for each value in your list.

39/77

Strings as Lists
• Now that you have some familiarity with lists, we can take a

second look at strings.

• A string is really a list of characters, so many of the concepts
from working with lists behave the same with strings.

40/77

Strings as Lists
message = "Hello Lists!"
message_list = list(message)
print(message_list)
['H', 'e', 'l', 'l', 'o', ' ', 'L', 'i', 's', 't', 's', '!']

41/77

for letter in message:
 print(letter)
H
e
l
l
o

L
i
s
t
s
!

42/77

Finding substring
A substring is a series of characters that appears in a string
>>> message = "I like cats and dogs"
>>> dog_present = 'dog' in message
>>> print(dog_present)
True

43/77

>>> message = "I like cats and dogs, but I prefer cats"
>>> first_cat_index = message.find('cats')
>>> print(first_cat_index)
7
>>> last_cat_index = message.rfind("cats")
>>> print(last_cat_index)
35

44/77

Replace substrings
You can use replace() function to replace any substring with
another substring.
>>> message = "I like cats and dogs, but I prefer cats"
>>> new_message = message.replace("cats","snakes")
>>> print(new_message)
I like snakes and dogs, but I prefer snakes

45/77

Counting substrings
>>> number_of_cats = message.count('cats')
>>> print(number_of_cats)
2

46/77

Splitting strings
>>> words = message.split(' ')
>>> print(words)
['I', 'like', 'cats', 'and', 'dogs,', 'but', 'I', 'prefer', 'cats']

47/77

Slicing a list /1
A subsets of a list are called slices
words = ['I', 'like', 'cats', 'and', 'dogs,', 'but', 'I', 'prefer', 'cats']
slice = words[0:3]
>>> for word in slice:
... print(word)
...
I
like
cats

48/77

Slicing a list /2
words = ['I', 'like', 'cats', 'and', 'dogs,', 'but', 'I', 'prefer', 'cats']
slice = words[2:5]
>>> slice = words[2:5]
>>> for word in slice:
... print(word)
...
cats
and
dogs,

49/77

Slicing a list /3
words = ['I', 'like', 'cats', 'and', 'dogs,', 'but', 'I', 'prefer', 'cats']
from 4rd to the end
>>> slice = words[4:]
>>> for word in slice:
... print(word)
dogs,
but
I
prefer
cats

50/77

Slicing strings
>>> message = "I like cats and dogs, but I prefer cats"
>>> first_char = message[0]
>>> last_char = message[-1]
>>> print(first_char, last_char)
I s
>>> first_three = message[:3]
>>> last_three = message[-3:]
>>> print(first_three, last_three)
I l ats

51/77

Exercise
Store the first 10 square numbers in a list.
Make an empty list that will hold our square numbers

52/77

>>> squares = []
>>> for number in range(1,11):
... new_square = number**2
... squares.append(new_square)
...
>>> for square in squares:
... print(square)
...
1
4
9
16
25
36
49
64
81
100

53/77

Exercise
• Make a list of the first ten multiples of ten (10, 20, 30...90,

100). Print out your list.

• Make a list of the first ten cubes(1, 8, 27...) using a list. Print
them out

• Store five names in a list. Make a second list that adds the
phrase "is awesome!" to each name. Print out the new list

54/77

Tuples
• Tuples are basically lists that can never be changed

• Tuples are not dynamic

• you cannot modify any element

• Lists are mutable objects and tuple are immutable objects

55/77

Defining Tuples
as the lists but use (), non []

colors = ('red', 'green', 'blue')
>>> print(colors[0])
red
>>> for color in colors:
... print("- " + color)
...
- red
- green
- blue

56/77

Adding an element to a Tuple

57/77

Sets
• unordered collections of distinct objects

• You define a set just like you define a list, but you have to
use braces "{}" instead of square brackets "[]"

• you can access individual elements (just like you can with a
list and tuple)

58/77

>>> shapes = {"square", "triangle", "circle"}
>>> for shape in shapes:
... print(shape)
...
circle
square
triangle
>>> shapes.add("polygon")
>>> shapes
{'polygon', 'circle', 'square', 'triangle'}
>>> shapes2 = set(["circle", "triangle", "hexagon"])
{'hexagon', 'circle', 'triangle'}

59/77

shapes = {'polygon', 'circle', 'square', 'triangle'}
shapes2 = {'hexagon', 'circle', 'triangle'}
>>> shapes.intersection(shapes2)
{'circle', 'triangle'}
>>> shapes.difference(shapes2)
{'polygon', 'square'}
>>> shapes.union(shapes2)
{'hexagon', 'circle', 'polygon', 'square', 'triangle'}

60/77

Exercise
3 is a Crowd

• Make a list of names that includes at least 4 people

• Write an if test that prints a message about the room being
crowded if there are more three people in your list

• Modify your list so that there are only two people in it. Use
one of the methods for removing people from the list

• Run your if test again.
61/77

Exercise
• Save your program from Three is Crowd under a new name

• add an else statement to your tests. If the else statement is
run, have it print a message that the room is not very
crowded

62/77

Exercise
Six is a Mob

• save the previous program with a new name

• add some names to your list, so that there are at least six people in the list

• modify your tests so that:

• more 5 people: print a message about there being a mob in the room

• 3-5 pepole: print a message about there being crowded

• 1 or 2 people: print a message about the room not being crowded

• no people: print a message about the room being empty

63/77

Dictionaries
• Store information that is connected in some way

• key:value pairs

• no order
dictionary = { 'key1': "value1",
 'key2': "value2",
 'key3': "value3",
 }

64/77

programming_language = { 'python': "Guido van Rossum",
 'perl': "Larry Wall",
 'c': "Kerninghan and Ritchie",
 }
print(programming_language)
{'python': 'Guido van Rossum',
'perl': 'Larry Wall',
'c': 'Kerninghan and Ritchie'}

65/77

Iteration
for key, value in programming_language.items():
 print("name: " + key)
 print("author: " + value)
name: python
author: Guido van Rossum
name: perl
author: Larry Wall
name: c
author: Kerninghan and Ritchie

66/77

Looping all the keys
for key in programming_language.keys():
 print("name: " + key)
name: python
name: perl
name: c

default iteration schema: by key
for key in programming_language:
 print("name: " + key)
name: python
name: perl
name: c

67/77

Looping all the values
for value in programming_language.values():
 print("author: " + value)
author: Guido van Rossum
author: Larry Wall
author: Kerninghan and Ritchie

68/77

Adding an element
programming_language['ruby']="Yukihiro 'Matz' Matsumoto"

for key, value in programming_language.items():
 print("name: " + key)
 print("author: " + value)

name: python
author: Guido van Rossum
name: perl
author: Larry Wall
name: c
author: Kerninghan and Ritchie
name: ruby
author: Yukihiro 'Matz' Matsumoto

69/77

Modify the value of an item
programming_language['ruby']="Matz"
for key, value in programming_language.items():
 print("name: " + key)
 print("author: " + value)
name: python
author: Guido van Rossum
name: perl
author: Larry Wall
name: c
author: Kerninghan and Ritchie
name: ruby
author: Matz

70/77

Removing an element
del programming_language['perl']
for key, value in programming_language.items():
 print("name: " + key)
 print("author: " + value)
name: python
author: Guido van Rossum
name: c
author: Kerninghan and Ritchie
name: ruby
author: Matz

71/77

Popping an element
programming_language.pop('ruby')
'Matz'
for key, value in programming_language.items():
 print("name: " + key)
 print("author: " + value)
name: python
author: Guido van Rossum
name: c
author: Kerninghan and Ritchie

72/77

Nesting Structures
Lists in a Dictionary

• You can use lists as value of your dictionary

• You cannot use lists as keys

• But you can use tuples as keys and int ...

73/77

74/77

Dictionary in
dictionary

75/77

76/77

Matrix and sparse matrix
matrix = [[1,5,6],[7,8,9]]
matrix[1][2]
9
matrix[0][1]
5

sparse_matrix = {}
sparse_matrix[0] = {1:12.5, 23:25.5}
sparse_matrix[1] = {3:13.5, 15:1.6}
sparse_matrix
{0: {1: 12.5, 23: 25.5}, 1: {3: 13.5, 15: 1.6}}

77/77

