Universita

® Jeoli Studi

@ della Campania
Lugr Vanuvitellr

[terables: List, 'Tuple, Set, Dictionaries
Ing. Lelio Campanile

1/64

Introducing lists

- A list 1s a collection of 1tems, stored 1n a variable
- Items should be related

- Items could be ot diffrent types (objects)

colors = [: :]
print(colors)

[: :]

2/64

Naming a hist
- since lists are collection of objects, 1t 1s a good practice to give
them a plural name
- for a list of color, call the list 'colors'
- for a list ot student, call the list 'students'

- 1n this way a single 1item 1n the list will be the singular name

(‘color'), the entire list will be plural ('colors') - Iteration pattern

3764

Defining a list

A list 1s a container which holds comma-separated values

(items or elements) between square brackets where Items or

elements don't need all have the same type.

- elements 1n a list have an index

- list are zero-index: the first element 1n a list has 0 as index

4/ 64

[.ist indexes

- iIndex counts elements 1 a list

- 1f an index has a positive value, 1t counts from the

beginning
- 1f an index has a negavite value, 1t counts backward

- you can get the element ot a list by 1ts index 1n square
brackets

5/64

colors = [

item red green blue black
index 0 1 2 3
(from left)

index -4 -3 -2 -1

(from right)

6/64

Python 3.6.2 Shell

Python 3 6.2 (v3.6.2:5fd33b5926, Jul 16 2017, 20:11:06)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> WARNING: The version of Tcl/Tk (8.5.9) in use may be unstable.

Visit http://www.python.org/download/mac/tcltk/ for current information.

>>> colors = ['red', 'green', 'blue', 'black']
>>> color = colors[@]

>>> color

"red’

>>> green_color = colors[-3]
>>> green_color

'green'’

>>> green_color = colors[1]
>>> green_color

'green'

>>>

Ln: 17 Col: 4

| NON) Python 3.6.2 Shell

>>>
>>>
>>>
>>>
>>> color = colors[5]
Traceback (most recent call last):
File "<pyshell#20>", 1line 1, in <module>
color = colors[5]
IndexError: list index out of range
>>> color = colors[-5]
Traceback (most recent call last):
File "<pyshell#21>", 1line 1, in <module>
color = colors[-5]
IndexError: list index out of range
>>> colors[4]
Traceback (most recent call last):
File "<pyshell#22>", 1line 1, in <module>
colors[4]
IndexError: list index out of range
>>>

Ln: 47 Col: 4

Common list operations

Edit element 1n a list
colors[@] = 'orange'

print(colors)
['orange', 'green', 'blue’', 'black']

9/64

Common list operations

oet the position of an element 1n list
colors = ['red’', 'green', 'blue’', 'black']

print(colors.index('green'))
1

10/64

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>> print(colors.index('pink"))

Traceback (most recent call last):
File "<pyshell#43>", 1line 1, in <module>

print(colors.index('pink'))

ValueError: 'pink' is not in list

>>>

>>>

>>>

>>>

>>>

>>>|

L Ln: 80 Col: 4 A

Common list operations

test if an element1s 1n a list

colors ['red', 'green', 'blue', 'black']
print(red' colors)

print('orange’ colors)

12/64

Common list operations

Adding 1tem to the end of a list

colors ['red', 'green', 'blue', 'black']

colors.append('orange ')

print(colors)
['red', 'green', 'blue'’, 'black', 'orange']

13/64

Common list operations

Insert 1item 1nto a list

we specity the position and everythings from that point 1s

shifted one position to the rigth

colors = [: : :]

colors.insert(1,)
print(colors)

[: : : :]

14/64

Common list operations

removing item by position

we specity the position and everythings from that point 1s

shifted one position to the rigth

colors = [: : :]

colors|[1]
print(colors)

[: :]

15/64

Common list operations

removing item by value

remove only the first macthing value 1n a list

colors = [: : ,]

colors.remove()

I : :]

16/64

Common list operations

popping item from a list

- remove the last item from the list (with no parameter)

- always 1t returns the popped item

17/64

colors = [:

last _item colors.pop()
print(last _item)

black

print(colors)

[: :]

18/64

Common list operations

popping item from a list
- or 1n a specific position

- always 1t returns the popped item

19/64

colors = [:

item = colors.pop(l)
print(item)

green

print(colors)

[: :

20/64

Common list operations

number of elements of a list

colors = [: : ,]

number item len(colors)
print(number item)

21/64

Numerical lists

- a list composed by only numbers
- 1t's not special
- you can use some special function

T'he range() function 1s a shortcut to create a numerical list

ordered

range(1,11): [1,2,3,4,5,6,7,3,9,10]

22/64

range() function

T'he range() function returns a list of consecutive integers.
T'he function has one, two or three parameters where last

two parameters are optional.

- range(a): Generates a sequence of numbers from 0 to a,

excluding a, incrementing by 1.

23/64

range() function

- range(a, b): Generates a sequence of numbers from a to b

excluding b, incrementing by 1.

- range(a,b,c): Generates a sequence of numbers from a to b

excluding b, incrementing by c.

24/64

Numerical lists
min()
ages = [22, 38, 33, 50, 9, 16, 28, 11]

youngest = min(ages)
print(youngest)

25/64

Numerical lists

max()
ages = [22, 38, 35, 50, 9, 16, 28, 11]

oldest = max(ages)
print(oldest)
50

26/64

Numerical lists

sum()
ages = [22, 38, 35, 50, 9, 16, 28, 11]
total = sum(ages)

print(total)
207

27/64

eXerclse

- calculate the ages' average
- add 3 different ages

- remove the last item

- remove age 22

- recalculate the ages'a average

28/64

eXerclse

- Store the values 'python', 'c', and Java' in a list. Print each

of these values out, using their position 1n the list.

29/64

eXerclse

- Print a statement about each of these values, using their
position 1n the list. Your statement could simply be, 'A nice

programming language 1s value.'

- 'Think of something you can store 1n a list. Make a list with
three or four items, and then print a message that includes at
least one 1tem from your list. Your sentence could be as

simple as, "One item 1n my list 1s a y

30/64

Lists and Looping

accessing all elements 1n a list

- we use a loop to access all the elements 1n a list, no matters how

many elements the list was composed
- we are able to "use" all the elements 1in the list with 3 line of code

- Aloop 15 a block of code that repeats itselt until 1t runs out of

1items to work with or until a certain condition 1s met

31/64

colors = [: : :]

color colors:
print(color)
red
green
blue
black

- the keyword "for" tells Python to get ready to use a loop

- the variable color 1s a placeholder variable. In thi1 variable python will place

each item 1n the list into, one at a time

- when there are no more 1tems 1n the list, the loop will end

32764

for loop and range function

a range(4):
print(a)

NN EPRO

33/64

Enumerating a list

It you want to enumerate a list, you need to add an index variable to hold the

current mdex

colors = [: : ,]
index, color enumerate(colors):
place = str(index)
print(+ place + + color)
place: color: red
place: color: green
place: color: blue

place: color: black

34/64

Lists and Looping
FOR Special keywords

Python allows two keywords to be used within a for loop:

break and continue.
The two keywords have two different meanings:

- Break used to immediatly break the loop and exit!

- Continue used to skip to the next iteration step!

35/64

while

while True

while

print("The sum of first
9 integers : ',s) else

eXerclse

- Repeat Furst Last, but this ime use a loop to print out each value 1n the list.

- Reapet Furst Last, but this time use a loop to print out your statements.

Make sure you are writing the same sentence for all values 1n your hist

- Repeat Furst Last, but this ime use a loop to print out your message for

eac.

eacl

1 1item 1n your list. Again, 1f you came up with different messages for

h value 1n your list, decide on one message to repeat for each value 1n

your list.

39/64

Strings as Lists

- Now that you have some tamiliarity with lists, we can take a

second look at strings.

- A string 1s really a list of characters, so many ot the
concepts from working with lists behave the same with

strings.

40/ 64

Strings as Lists

message =
message List List(message)
print(message Llist)

[b b b b b b b b

41/64

Letter message:
print(letter)

O — — (d I

-0 W R

42/64

Finding substring

A substring 1s a series of characters that appears in a string

>>> message =
>>> dog_present = message
>>> print(dog present)

43/64

>>2>
>>2>
>>2>

>>2>
>>2>

44/64

message =
first cat index = message.find(
print(first cat_ index)

last cat index = message.rfind(
print(last _cat index)

)

)

Replace substrings

You can use replace() function to replace any substring with

another substring.

>>> message =

>>> new_message message.replace(;)
>>> print(new_message)

I Llike snakes dogs, but I prefer snakes

45/64

Counting substrings

>>> number of cats = message.count()
>>> print(number of cats)

46/64

Splitting strings

>>> words = message.split(' ')
>>> print(words)
['l', 'like', 'cats', 'and', 'dogs,', 'but', 'I', 'prefer', 'cats']

47/64

Slicing a list /1

A subsets of a list are called slices

words = [

slice = words[©: 5]

>>> word slice:
print(word)

I

like

cats

48/64

words
slice

[L, :

words|[Z:5]

>>> slice = words[Z:5]

>>>

cats

dogs,

49/64

word slice:
print(word)

Slicing a list /2

Slicing a list /3

words = [: :

>>> slice = words[4:]

>>> word slice:
.. print(word)
dogs,

but

I

prefer

cats

30/64

Slicing strings

>>> message =

>>> first char = message|
>>> last _char = message[
>>> print(first char, last char)
I s

>>> first three = message]:
>>> last _three = message| i
>>> print(first three, last three)
I L ats

31/64

Exercise

Store the first 10 square numbers 1n a list.

Make an empty list that will hold our square numbers

32/64

>>> squares = []

>>> number range(1l,11):
new_square = number*¥*
squares.append(new_square)

>>> square squares:
print(square)

33/64

Exercise

- Make a list of the first ten multiples of ten (10, 20, 30...90,
100). Print out your list.

- Make a list of the first ten cubes(1, 8, 27...) using a list. Print

them out

- Store five names 1n a list. Make a second list that adds the

phrase "1s awesome!" to each name. Print out the new list

24/64

Tuples

- 'luples are basically lists that can never be changed
-"lTuples are not dynamic
-you cannot modify any element

- Lists are mutable objects and tuple are immutable objects

35/64

Defining "Tuples

as the lists but use (), non |]

colors = (: :)
>>> print(colors[@])
red
>>> color colors:
print(+ color)
- red
- green

- blue

36/64

If you try to add something to a tuple, you will get an error:

colors = ('red', 'green', 'blue')
colors.append('purple’)

AttributeError Traceback (most recent call las
t)
<ipython-input-37-edldbff53ab2> in <module>()
1l colors = ('red', 'green', 'blue')
-—=—=> 2 colors.append('purple')

AttributeError: 'tuple' object has no attribute 'append'’

Sets

- unordered collections of distinct objects

- You define a set just like you define a list, but you have to

"

use braces "{!}" instead ot square brackets "

- you can access individual elements (just like you can with a

list and tuple)

38764

>>> shapes = { :

>>> shape shapes:
print(shape)

circle

square

triangle

>>> shapes.add(
>>> shapes

{ : :

>>> shapes?2 = set([

{ : :

39/64

1)

shapes = { : ;
shapes’2 = { : ;
>>> shapes.lintersection(shapes?)

{ : J

>>> shapes.difference(shapes’?)

{ : J

>>> shapes.union(shapes?)

{ ’ ’ ’

60/64

Exercise

3 1s a Crowd

- Make a list of names that includes at least 4 people

- Write an 1t test that prints a message about the room being crowded 1t

there are more three people 1n your list

- Modity your list so that there are only two people 1n 1t. Use one of the

methods for removing people from the list

- Run your 1t test again.

61/64

Exercise

- Save your program from T'hree 1s Crowd under a new

narncec

- add an else statement to ypur tests. It the else statement 1s
run, have 1t print a message that the room 1s not very

crowded

62/64

Exercise

Six 1s a Mob

- save the previous program with a new name
- add some nemes to your list, so that there are at least six people 1n the list
- modity your tests so that:
-more D people: print a message about there being a mob 1n the room
-3-3 pepole: print a message about there being crowded
-1 or 2 people: print a message about the room not being crowded

-no people: pront a message about the room being empty

63/64

64/64

